BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 47 (11), 2875-2876 (1974)

A Mössbauer Study of the Valence States of ¹¹⁹Sn after the EC Decay of ¹¹⁹Sb in Antimony and Tellurium Iodides

Fumitoshi Ambe and Shizuko Ambe

The Institute of Physical and Chemical Research, Wako-shi, Saitama 351 (Received May 2, 1974)

Synopsis. The ¹¹⁹Sn-Mössbauer emission spectra of ¹¹⁹SbI₃ and ¹¹⁹mTeI₄ sources showed the formation of Sn(II) and Sn(IV) species after the EC decay of ¹¹⁹Sb in the matrices.

The measurement of the Mössbauer emission spectra enables one to estimate the chemical species produced by nuclear decay in solids.¹⁾ In previous papers,²⁻⁴⁾ we reported a series of studies of ¹¹⁹Sn after the EC decay of ¹¹⁹Sb in metals, oxides, and chalcogenides of antimony and tellurium. This paper will describe an extension of these studies to iodides.

The 38.0 hr ¹¹⁹Sb populates the 23.8 keV Mössbauer level of ¹¹⁹Sn by 100% EC decay. The resonant γ-rays emitted from the level provide useful information on the electronic state of the ¹¹⁹Sn atoms in the solid after the decay. We measured the Mössbauer emission spectra of ¹¹⁹Sn arising in antimony iodide labeled with ¹¹⁹Sb and also those of ¹¹⁹Sn produced by the successive EC decays of 4.7 day ^{119m}Te via ¹¹⁹Sb in tellurium iodide.⁵⁾

The procedures for producing the source nuclides and for preparing the 119Sb metal and 119mTeO2 were reported elsewhere. 4,6,7) The 119SbI₃ sources were prepared by reacting the 119Sb metal powder with iodine in refluxing toluene. The product was purified by repeated sublimation in a vacuum at 145 °C, yielding the iodide in the orange modification. The 119mTeI4 samples were obtained by evaporating a solution of ^{119m}TeO₂ in concd hydriodic acid over P₂O₅, SiO₂, and CaO under reduced pressure. The residue was thoroughly ground and then dried over fresh P₂O₅, SiO₂, and CaO in a vacuum until a constant weight $(\pm 0.1\%)$ was attained. The source materials were identified by the Debye-Scherrer patterns, while their purity was checked by the titrimetrical determination of the component elements.

The ¹¹⁹Sn-Mössbauer emission spectra of the iodides were measured against a BaSnO₃ absorber (0.9 mg ¹¹⁹Sn/cm²) by means of a conventional spectrometer with a transducer operated in the constant acceleration mode. Both the source and absorber were maintained

at the temperature of liquid nitrogen in a cryostat. The 23.8 keV γ -rays were detected with a 2 mm NaI scintillator through an 80 μ m Pd critical absorber for Sn KX-rays. In the case of the ^{119m}TeI₄ samples, the change in the spectra with the time was followed until a constant value was obtained for the Sn(II)-to-Sn(IV) line-intensity ratio, so that the contribution of the ¹¹⁹Sb arising from ^{119m}Te during the preparation of the samples was eliminated. The data were processed on the FACOM 230—60 and 75 computers of the Institute.

Typical spectra obtained are given in Fig. 1. The Mössbauer parameters of the emission lines, as determined by least-squares fitting, are summarized in Table

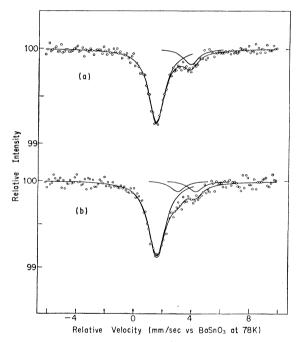


Fig. 1. ¹¹⁹Sn-Mössbauer emission spectra of (a) ¹¹⁹SbI₈ and (b) ¹¹⁹TeI₄ at 78 K against BaSnO₃ at 78 K. (In the abscissa a velocity of approach is taken negative.)

Table 1. Mössbauer parameters of the emission spectra of 119 Sn in 119 SbI $_3$ and 119 mTeI $_4$ and of the absorption spectra of the corresponding tin iodides at liquid nitrogen temperature

	Emission lines (this work)			Absorption lines (from the literature)			
Source materials	Isomer shift ^{a)} (mm/s)	Quadrupole splitting (mm/s)	Assigned valence	Corresponding tin compounds	Isomer shift ^{b)} (mm/s)	Quadrupole splitting (mm/s)	Ref.
119CL T	(1.50±0.05		Sn(IV)	SnI ₄	1.55	-	8
$^{119}\mathrm{SbI}_{8}$	$\{3.9 \pm 0.2$		Sn(II)	SnI_2	3.88		9
119m/T-T	(1.56±0.05		Sn(IV)	(see above)			
$^{119\mathrm{m}}\mathrm{TeI}_{4}$	3.5 ± 0.3	1.4 ± 0.3	Sn(II)	(see above)			

a) Relative to BaSnO₃ at 78 K. b) Relative to BaSnO₃.

1, together with the corresponding values of the absorption lines of tin iodides reported in the literature.^{8,9)}

As can be seen in Fig. 1(a), the emission spectra of 119 Sn arising in 119 SbI $_3$ consisted of two lines, which can be attributed to the Sn(IV) and Sn(II) states by comparing their isomer shifts with those of tin iodides (Table 1). Similarly, the 119m TeI $_4$ sources gave emission lines in the Sn(IV) and Sn(II) regions. The computer fitting of the spectra with two Lorentzians resulted in a broad Sn(II) line accompanying the dominant Sn(IV) line. The further decomposition of the Sn(II) line into a symmetric doublet gave a quadrupole splitting value of 1.4 mm/s, as is shown in Fig. 1(b) and Table 1, giving rise to an improvement in the χ^2 value by 1.6%.

Since the EC decay is accompanied by a change in the atomic number, the ¹¹⁹Sn atoms arising in the source materials must inevitably be in defect states associated with the local disturbance of the crystal lattice. The recoil energy accompanying the decay of ¹¹⁹Sb is estimated to be much smaller than the threshold energy required to displace an atom from its normal lattice site, while the recoil energy of the EC decay of ^{119m}Te to ¹¹⁹Sb is of the same order of magnitude as the displacement energy.

In SbI₃, each Sb is at the center of a nearly perfect octahedron of iodine atoms.¹⁰⁾ Therefore, the ¹¹⁹Sn-(IV) atoms arising in 119SbI3 may be expected to be in an electronic configuration different from that of SnI₄, in which tin atoms are surrounded by a practically regular tetrahedron of iodine atoms. 10) However, no significant difference was found between the isomer shift of the Sn(IV) emission line of 119SbI₃ and that of the absorption line of SnI₄. Similarly, the isomer shift of the Sn(II) emission line is essentially identical with that of SnI₂. The crystal structure of TeI₄ seems not to have been determined yet. The powder X-ray diffraction pattern and the ¹²⁵Te-Mössbauer absorption spectrum of TeI411) show that its structure is different from that of SnI₄, the site symmetry of the Te atom not being cubic. However, no significant difference was found between the isomer shift of the Sn(IV) emission line of ^{119m}TeI₄ and that of SnI₄. The quadrupole splitting observed for the Sn(II) line of the ^{119m}TeI₄ source is the only parameter found for the emission lines that is different from the corresponding value of the absorption line. SnI2 has a monoclinic structure consisting of infinite $(SnI_3)_n^{n-}$ trigonal prisms, the coordination number of the tin atoms being seven. 12) The Mössbauer absorption spectrum of SnI₂, however, shows no resolvable quadrupole splitting.⁹⁾ The large quadrupole splitting of the Sn(II) emission line of

^{119m}TeJ₄ suggests a much more distorted configuration of iodine ligands around the defect ¹¹⁹Sn atom in the TeJ, matrix

It is interesting to compare the present results on iodides with those on oxides and chalcogenides reported previously.4) In the series of antimony chalcogenides, the fraction of Sn(II) increased with the decrease in the electronegativity of the chalcogen ligand. The distribution ratio of 119Sn between the Sn(II) and Sn(IV) states in 119SbI3 is closer to that of 119Sb2S3 than to that of ¹¹⁹Sb₂Te₃. This corresponds to the fact that the electronegativity of iodine is close to that of sulfur. The finding that the 119Sn atoms were distributed between the Sn(II) and Sn(IV) states in ^{119m}TeI₄ presents an interesting contrast with the result for 119mTeO₂, for which no Sn(II) species was observed. In ^{119m}TeO₂, the similarity of the crystal structures of TeO₂ and SnO₂ is considered to exclude the stabilization of ¹¹⁹Sn as Sn(II). The absence of such an effect in TeI4 as well as the lower electronegativity of iodine may have allowed the stabilization of a part of 119Sn as Sn(II).

We thank Prof. N. Saito for his interest and continual encouragement. We are grateful to the staff of IPCR cyclotron for irradiations and to Mr. Y. Iimura for powder X-ray pattern measurements.

References

- 1) G. K. Wertheim, "The Electronic Structure of Point Defects," ed. by S. Amelinckx, R. Gevers, and J. Nihoul, North-Holland Publishers, Amsterdam (1971), p. 1.
- 2) F. Ambe, H. Shoji, S. Ambe, M. Takeda, and N. Saito, Chem. Phys. Lett., 14, 522 (1972).
 - 3) F. Ambe and S. Ambe, Phys. Lett., 43A, 399 (1973).
- 4) F. Ambe, S. Ambe, H. Shoji, and N. Saito, *J. Chem. Phys.*, **60**, 3773 (1974).
- 5) Similar experiments on ¹¹⁹SbI₃ have recently been carried out by Y. Llabador (Private communication from Prof. J. P. Adloff to Prof. N. Saito).
- 6) F. Ambe, S. Ambe, and H. Shoji, *Radiochem. Radioanal.* Lett., **15**, 349 (1973).
- 7) S. Ambe, F. Ambe, and N. Saito, *Radiochim. Acta*, 19, 121 (1973).
- 8) S. Bukshpan and R. H. Herber, J. Chem. Phys., 46, 3375 (1967).
- 9) N. N. Greenwood and A. Timnick, J. Chem. Soc. A, 1971, 676.
- 10) R. W. G. Wyckoff, "Crystal Structures," Vol. 2, Interscience Publishers, New York (1965), pp. 45, 131.
- 11) P. Jung and W. Triftshäuser, Phys. Rev., 175, 512 (1968).
- 12) W. Moser and I. C. Trevena, *Chem. Commun.*, **1969**, 25.